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As adapting vehicles to drivers’ preferences has become an important focus point in the automotive sector, a more convenient,
objective, real-time method for identifying drivers’ personality traits is increasingly important. Only recently has increased
availability of driving signals obtained via controller area network (CAN) bus provided new perspectives for investigating
personality differences. ,is study proposes a newmethodology for identifying drivers’ Big Five personality traits through driving
signals, specifically accelerator pedal angle, frontal acceleration, steering wheel angle, lateral acceleration, and speed. Data were
collected from 92 participants who were asked to drive a car along a pre-defined 15 km route. Using statistical methods and the
discrete Fourier transform, some time-frequency features related to driving were extracted to establish models for identifying
participants’ Big Five personality traits. For these five personality trait dimensions, the coefficients of determination of effective
predictive models were between 0.19 and 0.74, the root mean squared errors were between 2.47 and 4.23, and the correlations
between predicted scores and self-reported questionnaire scores were considered medium to strong (0.56–0.88). ,e results
showed that personality traits can be revealed through driving signals, and time-frequency features extracted from driving signals
are effective in characterizing and identifying Big Five personality traits. ,is approach could be of potential value in the
development of in-car integration or driver assistance systems and indicates a possible direction for further research on
convenient psychometric methods.

1. Introduction

It has been shown that personality traits can be used to
explore individuals’ potential needs in different contexts,
such as driving. Several studies have demonstrated that risky
driving behaviors are positively associated with neuroticism
and extraversion [1–3], but negatively associated with
agreeableness, openness, and conscientiousness [1, 4, 5].
Furthermore, Shen et al. [6] found that positive driving
behaviors are negatively correlated with neuroticism and
positively correlated with openness, conscientiousness, ex-
traversion, and agreeableness. Currently, there is a need for
individualization of vehicles in the automotive industry with

the aim of improving driving experiences [7]. ,us, it has
become an important focal point [8] to adapt the vehicle to
drivers’ preferences (e.g., personality).

In the traditional method of measuring personality traits,
self-report questionnaires, such as the 44-item Big Five
Inventory (BFI-44), are used [9]. Although personality traits
are relatively stable individual psychological variables that
do not need to be measured frequently over a short period of
time [10], relying on self-report questionnaires limits its
potential to improve driving experiences in some scenarios.
For instance, for nonfixed drivers (e.g., taxis, rental cars, and
family cars) filling out a questionnaire before every time they
drive not only does not meet a driver’s need for vehicle
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adaptation but also takes considerable time and concen-
tration, which limits the availability and effectiveness of self-
reported personality traits. ,erefore, a more convenient,
objective, real-time method to identify drivers’ personality
traits has become increasingly important.

Sensors and electronic control units (ECUs) have only
recently become increasingly common in the automotive
industry, because they not only guarantee optimal engine
function, but also provide a large amount of almost real-time
data about the car, driver, and surrounding environment.
Various tools, including sensors, driving simulators, and
controller area network (CAN) bus data logger, have been
applied to conduct studies and many meaningful conclu-
sions have been achieved. For instance, regarding the results
of vehicle acceleration and steering behaviour analysis as
indicators of driving safety, Wu et al. [11] attempted to
determine the optimum design of pavement marking to
reduce the rutting on asphalt pavements. Besides, for safety
consideration, driving simulators have been used in studies
where field operating tests cannot be carried out, such as the
study investigating the safety of trucks under crosswind of
tunnel and bridge sections [12]. Moreover, the CAN data
have been used for the communication among ECUs
mounted to a car [13], the tuning problem of digital pro-
portional-integral-derivative parameters for a DC motor
[14], and integrated motor-transmission powertrain systems
[15]. Additionally, as one of the five protocols used in OBD-
II vehicle standards, CAN technology has become the
standard for automotive embedded systems [16]. ,e in-
creased availability of rich driving data has provided new
perspectives for investigating individual behaviors and
psychological indicators.

With the advantage of high quality and fine data
granularity of driving signals provided by in-vehicle sensors,
many studies have been conducted based on these data. It
has been demonstrated that driving signals can be used to
recognize drunk driving behaviors [17], identify drivers [18],
and detect anomalous driving [19]. Additionally, the ca-
pability of recording real-time driving information is soon
used in other applications with the help of machine learning
technology [20]. Furthermore, Wan et al. [21] attempted to
detect anger states while driving based on multiple sensor
signals using a least square support vector machine model
(82.20% accuracy rate).

In summary, although there has been evidence that
driving signals can reveal personality traits, the method of
identifying personality traits based on driving signals has not
been established in previous studies. It motivates our efforts
to intensively explore the possibility of a solution for real-
time identification of personality traits through driving
signals. In this work, we aimed to construct feature sets from
raw driving signals provided by in-vehicle sensors using
CAN bus and identify Big Five personality traits based on
these features using a machine learning approach.

2. Materials and Methods

In this section, a methodology with the aim of identifying
personality traits through CAN bus data is proposed. Using

statistical methods and the discrete Fourier transform, the
features related to personality traits are extracted from raw
driving signals provided by in-vehicle sensors using CAN
bus in the time and frequency domains, respectively. ,ese
features will be then used to identify Big Five personality
traits automatically by the linear regression, support vector
regression, etc. In the study, a four-step procedure was
conducted: (1) Data collection, (2) Data preprocessing, (3)
Feature extraction and selection, and (4) Model training, as
shown in Figure 1.

2.1. Data Collection

2.1.1. Experimental Settings. A BMW i3 test vehicle was
equipped with a data logger to record the signals on the CAN
bus at the sampling frequency of 10 data points per second
for this study. We collected data from 92 participants (52
males and 40 females) who were recruited using convenience
sampling from BMW China. All of the participants were
asked to drive the BMW i3 test vehicle on a pre-defined route
as shown in Figure 2. ,e pre-defined car route was 15 km
and included traffic lights stop signs, surface streets etc.With
this user consistent driving task, we wanted to eliminate
interference information, so as to explore deeper insights
between driving behavior and personality traits. To facilitate
data analysis, we divided the route into different sub-routes
according to road conditions, and an instructor sitting in the
copilot recorded the time that the car passed through dif-
ferent sub-routes during the experiment.

Once the procedure of driving signals collection was
done, each participant was required to complete the BFI-44
to measure their Big Five personality traits. ,e question-
naire consists 44 items and five subscales: openness (10
items); conscientiousness (9 items); extraversion (8 items);
agreeableness (9 items); and neuroticism (8 items). Each
item of BFI-44 is assessed on a Likert 5-point scale, ranging
from 1 (“disagree strongly”) to 5 (“agree strongly”). In this
study, the Chinese version of the questionnaire was
implemented. Its validity and reliability has been proved
[22].

2.1.2. Signals Selection. Among the signals transmitted on
the CAN bus, the analyses of this study focused on five
signals recorded at the sampling frequency of 10 data
points per second: accelerator pedal angle, frontal ac-
celeration, steering wheel angle, lateral acceleration, and
speed. Compared with other signals, these signals are not
only more stable and easy to obtain on different types or
models of vehicles, but also can reflect drivers’ driving
behavior from different aspects. For instance, accelerator
pedal and steering wheel signals are the direct output of
drivers that directly reflect the interaction between the
driver and the vehicle [23]; speed and accelerations are
measures of drivers’ driving style [24] that can reflect
drivers’ specific driving preferences and habits, e.g., harsh
accelerations or speeding. An example of these signals is
shown in Figure 3.
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Figure 1: ,e procedure for identifying Big Five personality traits from driving signals.

Figure 2: Pre-defined route during data collection (image blurred for anonymity purposes).
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Figure 3: Example of signals acquired from the CAN bus.
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2.2. Data Preprocessing. Raw driving signals with noisy and
redundant information may bring more redundancy and
complexity for models training and affect the performance
of recognition models. ,erefore, we need to preprocess the
raw driving signals, which includes two steps: (1) data
segmentation and (2) low-pass filtering.

2.2.1. Data Segmentation. Since driving under the same road
conditions can be regarded as repetitive behaviors, large
amounts of repetitive data may lead to low computational
efficiency and data redundancy. In addition, it is difficult to
guarantee the consistency of road conditions such as corners
or curved roads in the actual driving environment. ,en
recognition models trained based on data obtained under
such road conditions may have a poor generalization ability
in practice. In this work, we analyzed driving signals of a
straight sub-route from point A to point B (as shown in
Figure 1). On average, participants took 26.03 minutes
(SD� 7.48) to complete the course. For the consistency of
driving data, we used driving signals for the first 9600 data
points (16 minutes).

2.2.2. Low-Pass Filtering. As unexpected jolts or vibrations
might cause some noise or high-frequency components in
data collection, we should do the job of filtering on the raw
driving signals as the signal processing. Gaussian filter is a
low-pass filter, attenuating noises and high-frequency
components in signal data [25]. We computed the convo-
lution of each driving signal and the Gaussian filter, whose
window length is 5, and whose coefficients are
g � (1/16)[1, 4, 6, 4, 1]. ,e procedure of filtering is defined
as

y(n) � 􏽘
∞

t�−∞
x(t)g(n − t) � x(n)∗g(n), (1)

where x is the driving signal,∗ stands for convolution, and g

denotes the Gaussian filter. We take a fragment of the frontal
acceleration as an example. After low-pass filtering, the
filtered data (See Figure 4(b)) are smoother compared to the
raw data (See Figure 4(a)). And many little fluctuations and
burrs shown in the red circle in Figure 4(a) are removed.

2.3. Feature Extraction and Selection. After data pre-
processing, we then need to extract and select features
from driving signals that can effectively characterize the
Big Five personality traits. Specifically, using the time-
frequency analysis method, we first extracted features in
the time and frequency domains, respectively. And then
we find and remove redundant information from these
features by dimensionality reduction and feature
selection.

2.3.1. Temporal Domain Features Extraction. Temporal
domain information related to the statistical value of driving
signals (e.g., mean value, median value, and standard de-
viation value) was used to characterize drivers’ behavior

patterns. Since the global statistical value of signals cannot
reflect the details of driving behavior, this information was
integrated into a given sliding temporal window. Specifi-
cally, in a temporal window of width w, we defined the set of
data Uj∈Ii

xj, Ii � i + 1, i + 2, · · · , i + w{ } and the following
features:

(1) Moving median: the median value of the set.
(2) Moving mean: the mean value of the set
(3) Moving standard deviation: the standard deviation

value of the set.

To exam linear dependence of a signal, we estimated
autocorrelation and partial autocorrelation of different lags.
Specifically, autocorrelation is the correlation of a signal with
a delayed copy of itself [26], which is defined as

rk �
􏽐

n−k
t�1 xt − μ( 􏼁 xt+k − μ( 􏼁

􏽐
N
t�1 xt − μ( 􏼁

2 , (2)

where n refers to the length of the signal, μ refers to mean of
the signal, and k refers to the lag. Partial autocorrelation
gives the partial correlation of a stationary time series with
its own lagged values [26], which is defined as

pk �
cov xt, xt−k|xt−1, . . . , xt−k+1( 􏼁

���������������������������������������
var xt|xt−1, . . . , xt−k+1( 􏼁var xt−k|xt−1, . . . , xt−k+1( 􏼁

􏽱 ,

(3)

where cov refers to the covariance and var refers to the
variance and k refers to the lag.

For each signal, we obtained 45 statistical values through
a temporal window of 2 minutes with an overlap ratio of
50%. By setting different delays from 2 seconds to 20 seconds
in steps of 2 seconds (k � 20, 40, · · · , 200), we extracted 20
linear dependence features. Finally, we obtained a total of
(45 + 20)∗ 5� 325 time domain features.

2.3.2. Frequency Domain Features Extraction. In addition to
temporal domain features extracted using statistical
methods, we conducted. ,e discrete Fourier transform to
convert data from temporal domain to frequency domain
[27]. ,e formula is defined as

Fk � 􏽘
n−1

j�0
xje

−i2πk(i/n)
, (4)

where n refers to the length of the signal, i is the sign of
complex number.

For each signal, we chose the first 100 amplitudes and
phases, respectively. Finally, we obtained a total of
(100 + 100)∗ 5�1000 frequency domain features.

2.3.3. Dimensionality Reduction. It must be emphasized that
driving signals may be interrelated. For instance, the average
Pearson correlation coefficient between different signals is
shown in Figure 5. ,erefore, some of the 325 + 1000�1325
features may be closely related. ,is redundant information
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may impact the performance of recognition models, so we
need to reduce the redundancy of the feature set.

Since the values of different signals were measured on
different scales, in case some important features extracted
from signals with small values might be ignored, all features
were firstly processed by Z-score normalization. Principal
Component Analysis (PCA) was then utilized to reduce the
feature dimensions, as it has been demonstrated that PCA
could perform much better than other techniques on
training sets with small size [28]. To make reconstruction
error less than 5%, we reserved 77 principal components as
features after dimensionality reduction.

2.3.4. Feature Selection. To get the optimal performance of
recognition models, we should find and remove useless
features from the above 77 features. In this study, we used
the sequential backward selection (SBS) to find the best
subset of features that reduced the feature dimension while
minimizing the performance loss of recognition model [29],
and Algorithm 1 describes the whole process. SBS is a greedy
search algorithm that starts from the whole feature set X and
sequentially discards the feature x’ so as to improve (or
minimally worsens) the evaluation measure J. And it stops
when the evaluation measure J is not increased or the subset
X′ is an empty set, which means that all remaining features
are useful for the recognition model.

2.4. Model Training. We trained regression models for the
recognition of Big Five personality traits. Since there is no
evidence showing that a certain machine learning algo-
rithm is the most suitable for identifying personality
traits, we investigated the state-of-the-art regression
models in this study: linear regression (LR) [30], support
vector regression (SVR) [31], and Gaussian process re-
gression (GPR) [32].

LR is a parameter model, whose parameters are esti-
mated by minimizing the mean square error, and makes
predictions requires simple matrix multiplication [30]. SVR
is an extension of support vector classification, which first
maps feature vectors to a higher-dimensional feature space
using kernel trick and then makes predictions based only on
support vectors [31]. In contrast to the above described
algorithms, GPR is a nonparametric kernel-based proba-
bilistic model, with the advantage of automatic tuning of the
kernel parameters from the training data by maximizing log
marginal likelihood [32].

In this study, we took the linear kernel function for SVR,
and the kernel function of the dot-product kernel plus the
white kernel for GPR. To evaluate the predictive perfor-
mance of the models, we considered the root mean squared
error (RMSE), the coefficient of determination (R2), and the
Pearson correlation coefficient (r) between predicted scores
and self-reported scores of the respective personality traits.
Denote C, Γ as a regression function and its corresponding
parameters set and fi, i � 1, 2, · · · , n as the ith sample’s
feature set. ,e RMSE, R2 and r can be written as

RMSE �

�����������������

1
n

􏽘

n

i�1
C fi, Γ( 􏼁 − Li( 􏼁

2

􏽶
􏽴

,

R
2

� 1 −
􏽐

n
i�1 C fi, Γ( 􏼁 − Li( 􏼁

2

􏽐
n
i�1 C fi, Γ( 􏼁 − L( 􏼁

2 ,

r �
􏽐

n
i�1 C fi, Γ( 􏼁 − C(f, Γ)􏼐 􏼑 Li − L( 􏼁

����������������������

􏽐
n
i�1 C fi, Γ( 􏼁 − C(f, Γ)􏼐 􏼑

2
􏽱 ������������

􏽐
n
i�1 Li − L( 􏼁

2
􏽱 ,

(5)

C(fi, Γ) outputs the predicted score from features fi and Li

refers the true score of the ith sample. In this work, we
applied 10-fold cross validation and averaged performance
measures across all folds within a single prediction model.

3. Results

3.1. Demographics and Questionnaire Scores of BFI-44. Of
these 92 participants (52 males and 40 females), their ages
ranged from 21 to 56 years (mean� 31.84, SD� 7.03), and
their driving experience ranged from 0.5 to 33 years
(mean� 7.84, SD� 5.96). In terms of education level, the
participants reported having the following levels: below
university diploma, 2.17% (n� 2); university diploma,
51.09% (n� 47); and above university diploma, 46.74%
(n� 43). Descriptive statistics of self-reported personality
traits are provided in Table 1. Of the 92 participants who
formed the study sample, the personality traits scores be-
tween two genders showed no significant difference
(openness: t� 0.62, p� 0.53; conscientiousness: t� 1.14,
p� 0.26; extraversion: t� −1.16, p� 0.25; agreeableness:
t� −0.08, p� 0.45; neuroticism: t� -1.38, p� 0.17), which
means that gender was not a factor which affects the per-
formance of the Big Five personality traits recognition
models in our date set.

3.2. 3e Recognition of Big Five Personality Traits. After
feature selection, the remaining features were different
according to regression algorithms. ,e number of
remaining features for LR, SVR, and GPR was shown in
Table 2.

,e performance of the regressionmodels is presented in
Figure 6 and Table 3. ,e results showed that personality
traits can be revealed through driving signals. Specifically,
for the five dimensions of personality traits, the best per-
formance occurred with SVR predicting openness
(RMSE � 2.47, R2 � 0.74, r � 0.88), followed by SVR pre-
dicting conscientiousness (RMSE � 2.94, R2 � 0.54,
r � 0.79), SVR predicting extraversion (RMSE�3.33,
R2 � 0.45, r � 0.75), SVR predicting agreeableness
(RMSE � 3.48, R2 � 0.38, r � 0.73), and LR predicting
neuroticism (RMSE � 4.23, R2 � 0.19, r � 0.57). Further-
more, our results indicated that the performances of dif-
ferent models varied. ,e results showed that the average
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performance of the SVR model is better than the LR model
and GPR model.

4. Discussion

We collected driving signals provided by in-vehicle sensors
using CAN bus and trained machine learning models for
identifying an individual’s Big Five personality traits. Using
the time-frequency analysis method, we extracted features
from driving signals in the time and frequency domains,
respectively, which were used to build personality traits
recognition models. For the five personality trait dimen-
sions, the coefficients of determination of the different
models were between 0.19 and 0.74, the root mean squared
errors were between 2.47 and 4.23, and the correlations
between self-reported questionnaire scores and predicted
scores were considered medium to strong (0.56–0.88). Our
findings demonstrated that driving signals can be used to
automatically identify individual personality traits in real-
time.

Our results shown the driving signals are a convenient
and objective source for measuring individual personality
traits. As can be seen from our work, participants only need
to drive for less than 10 km before their personality traits can
be identified quite precisely. ,ese results were consistent
with previous studies showing an association between

personality traits and driving behavior [2, 4, 6]. It is worth
noting that the effective machine learning models in this
current study were built based on low-level features in the
time and frequency domains. ,e high-level features of
driving behaviors in this field (e.g., lane switching, tailgating,
overtaking, and speeding) are often based on subjective
qualitative evaluations [33, 34], which limits the effectiveness
of integrating these features into one machine learning
model in practice. Although, time-frequency features may
not provide much intuitive understanding of individual
driving behaviors, they could provide more comprehensive
information about driver’s personality reflected in driving.
Our results demonstrated the validity of building machine
learning models to identify self-reported personality traits
based on low-level features extracted using the time-fre-
quency analysis.

Modern cars have recently become equipped with sev-
eral hundred sensors and ECUs, which means we can easily
obtain driving signals at minimal cost. ,us, this method to
identify personality traits based on driving signals is suitable
for the development in-car integration and single-chip
embedded systems. Additionally, personalization in the
automobile sector is a relatively recent trend to ensure
optimal user experience in recent years [35]. Although
personalization can be explicitly implemented by providing
drivers with system parameters that can be manual tune, the

Input:
X: ,e whole feature set
J: Evaluation measure.

Output:
X′: ,e best subset of features.

X′ � X,
repeat

x′ � argmaxx∈X J(X′ − x)􏼈 􏼉,
X′ � X′ − x′,

until not improvement in J OR X′ � ∅

ALGORITHM 1: Sequential backward selection.

Table 1: Descriptive statistics of personality variables.

All Male Female
M SD M SD M SD

Openness 36.61 5.50 36.92 5.31 36.20 5.64
Conscientiousness 34.35 4.81 34.85 4.47 33.70 5.09
Extraversion 27.77 5.29 27.21 5.25 28.50 5.18
Agreeableness 35.16 5.61 34.77 6.29 35.67 4.45
Neuroticism 19.21 5.33 18.54 5.14 20.08 5.38

Table 2: Number of remaining features after feature selection.

LR SVR GPR
Openness 39 39 47
Conscientiousness 23 21 30
Extraversion 31 34 36
Agreeableness 37 45 32
Neuroticism 24 16 27

Journal of Advanced Transportation 7



implicit mode that estimates drivers preferences based on
observing their behavior not only reduces the tedious and
error-prone task of manual tuning, but also satisfies drivers’
need for vehicle adaptation through fine-tuning [36]. For
example, the “Intelligent Personal Assistant” (IPA) in ve-
hicles is an important feature which offers a way for drivers
to interact with their vehicles using their voice [37]. Iden-
tifying driver’s personality traits by driving behavior and
personalizing the IPA dynamically to the current driver will
increase the customer experience. ,erefore, this method
may have potential value of the development of human-
centered intelligent driving environments.

As a pilot study, it is appropriate to highlight several
limitations. First, in this study personality traits were
measured using self-report questionnaires. Although the
validity of the questionnaires in accessing personality traits
has been well supported in the literature [22], more criteria
could be included in future studies. Second, this study’s
sample population comprised white-collar workers and was
not sufficiently large. ,erefore, the validity of our model in
identifying self-reported personality traits cannot be equated
with the effectiveness in populations of individuals with

different occupations, education levels, and cultures. ,ird,
the current study built recognition models based on low-
level features extracted using the time-frequency analysis,
which cannot provide a clear understanding for the rela-
tionship between driving behavior and personality. Further
research based on intuitively visible high-level features is
necessary. Fourth, although our results showed the validity
of identifying personality traits using this model, why the
performance of models of personality traits in different
dimensions is varied remains unclear. ,e disparity of the
accuracies in identifying different dimensions implied that
not all the personality-relevant could be equally reflected in
driving. For a better understanding of how driving behavior
reflects individual personality traits, more future works need
to continue from two aspects: first, conducting more ex-
periments, such as driving simulator experiments using
fMRI technology [38]; second, explore the relationship
between driving behavior and personality traits using more
in-depth analysis, such as factor analysis.

Despite those limitations due to the exploratory nature
of the study, it suggests the potential in future research on
data-driven psychological measurement. Driving signals

Openness

Conscientiousness

Extraversion

Agreeableness

Neuroticism

2.5 5.0
RMSE R2 r

7.5 10.0 –1 0 1 0.0 0.5 1.0

Algorithm
LR
SVR
GPR

Figure 6: Box and whisker plot of prediction performance measures from 10-fold cross validation.

Table 3: ,e performance of the regression models.

LR SVR GPR
RMSE R2 r RMSE R2 r RMSE R2 r

Openness 2.87 0.69 0.87 2.47 0.74 0.88 2.78 0.71 0.87
Conscientiousness 3.07 0.53 0.76 2.94 0.54 0.79 2.93 0.55 0.77
Extraversion 3.95 0.11 0.66 3.33 0.45 0.75 3.96 0.13 0.65
Agreeableness 5.16 −0.32 0.57 3.48 0.38 0.73 4.31 0.02 0.58
Neuroticism 4.23 0.19 0.57 4.12 0.19 0.56 4.26 0.20 0.56
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have the advantages of being real-time, continuous, non-
intrusive, and reliable [39], while requiring him/her fin-
ishing a questionnaire frequently and repeatedly is often not
acceptable in practice; therefore, this method can measure
personality traits in real-time and objectively, which cannot
be achieved by a questionnaire. So our recognition model
may show advantages in some cases, such as the driver is
nonfixed but has a high demand for vehicle adaptation.
Moreover, future research can transfer this method to the
recognition of other psychological indicators in driving
environment, because this method can monitor the con-
tinuous change of driver’s psychological indicators. Addi-
tionally, although technological progress enables increasing
automation in vehicles, the current general assumption for
designing driving systems, such as driving assistance sys-
tems, is that drivers prefer to use systems that adopt a similar
driving style to their own [8]. However, there is little em-
pirical evidence to support this assumption. ,us, this
method provides a new direction for the research on de-
signing driving assistance systems.

5. Conclusions

,is study moved one step forward toward a low-cost,
nonintrusive solution for real-time identification of Big Five
personality traits, which could be of potential value in the
development of in-car integration. Our experiment dem-
onstrated that driving signals provided by in-vehicle sensors
using CAN bus can be an objective data source for mea-
suring personality traits, and the predictive machine
learning models showed effectiveness in identifying self-
reported personality traits. Furthermore, this pilot study
indicated a possible direction for further investigation on
convenient psychometric methods and provided new per-
spectives for the development of intelligent driving envi-
ronments from a human-centered perspective.
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[35] M. Hasenjäger, M. Heckmann, and H. Wersing, “A survey of
personalization for advanced driver assistance systems,” IEEE
Transactions on Intelligent Vehicles, vol. 5, no. 2, pp. 335–344,
2020.

[36] H. Fan and M. S. Poole, “What is personalization? perspec-
tives on the design and implementation of personalization in
information systems,” Journal of Organizational Computing
and Electronic Commerce, vol. 16, no. 3-4, pp. 179–202, 2006.

[37] N. Horn, “Hey BMW, now we’re talking! bmws are about to
get a personality with the company’s intelligent personal
assistant,” 2018, https://www.press.bmwgroup.com/global/
article/attachment/T0284429EN/413869.

[38] P. Chen, F. Chen, L. Zhang, X. Ma, and X. J. T. Pan, “Ex-
amining the influence of decorated sidewaall in road tunnels
using fMRI technology,” Tunnelling and Underground Space
Technology, vol. 99, p. 103362, 2020.

[39] Z. Li, S. Li, R. Li, B. Cheng, and J. Shi, “Online detection of
driver fatigue using steering wheel angles for real driving
conditions,” Sensors, vol. 17, no. 3, p. 495, 2017.

10 Journal of Advanced Transportation

http://arxiv.org/abs/1907.00749
https://www.press.bmwgroup.com/global/article/attachment/T0284429EN/413869
https://www.press.bmwgroup.com/global/article/attachment/T0284429EN/413869

